Dynamic response of an RC beam to a drop weight impact (steel ball) ←
Ball mass - M s = 2.1 t ←
Ball material - steel ←
Modulus of elasticity - E s = 206 GPa ←
Poisson′s ratio - ν s = 0.3←
Mass density - ρ s = 7.85 t m 3 ←
Ball volume - V s = M s ρ s = 2.1 t 7.85 t /m 3 = 0.268 m 3 = 4/3πR³ ←
Ball radius - R s = 3 3 4 ·V s π = 400 mm ←
Height of bottom above the beam surface - H = 2 m ←
Structure type - simply supported beam ←
Beam length - L = 12 m ←
Material - reinforced concrete C20/25 ←
Modulus of elasticity - E = 20 GPa ←
Poisson′s ratio - ν = 0.2←
Shear modulus - G = E 2· (1 + ν ) = 20 GPa 2· (1 + 0.2) = 8.33 GPa ←
Unit weight - γ b = 25 kN m 3 ←
Cross section - rectangular with dimensions: ←
Width - b = 350 mm ←
Height - h = 650 mm ←
Area - A = b ·h = 350 mm ·650 mm = 2275 cm 2 ←
Second moment of area - I = b ·h 3 12 = 350 mm · (650 mm ) 3 12 = 8009895833 mm 4 ←
Shear area - A Q = 5 6 ·A = 5 6 ·2275 cm 2 = 1895.83 cm 2 ←
Self-weight - g b = A ·γ b = 2275 cm 2 ·25 kN /m 3 = 5.69 kN /m ←
Uniform load - q = 10 kN m ←
Gravity acceleration - g = 9.81 m s 2 ←
Uniform mass - m = g b + q g = 5.69 kN /m + 10 kN /m 9.81 m /s 2 = 1.6 t /m ←
L=12m H=2m M=2.1t g Simple analytical solution←
The structure is reduced to a SDOF system for simplicity ←
Dynamically equivalent mass - M d = 2·L π ·m = 2·12 m 3.14 ·1.6 t /m = 12.22 t ←
Potential energy of the ball before dropping ←
E p = M s ·g ·H = 2.1 t ·9.81 m /s 2 ·2 m = 41.28 kJ ←
Kinetic energy immediately before the impact - E k = M s ·v 0 2 2←
The velocity at the moment before the impact is determined by the energy conservation law E k = E p : ←
v 0 = 2·E p M s = 2·41.28 kJ 2.1 t = 6.26 m /s ←
Perfectly inelastic collision model is assumed. ←
Total mass after contact - M tot = M s + M d = 2.1 t + 12.22 t = 14.33 t ←
The velocity immediately after the contact is determined by the law of conservation of momentum: ←
v 1 = v 0 ·M s M tot = 6.26 m /s ·2.1 t 14.33 t = 0.92 m /s ←
Structural stiffness for a vertical force applied at the middle point of the span ←
K = 48·E ·I L 3 = 48·20 GPa ·8009895833 mm 4 (12 m ) 3 = 4449.94 kN /m ←
Deflection due to uniform load ←
z 0 = 5· (g b + q ) ·L 4 384·E ·I = 5· (5.69 kN /m + 10 kN /m ) · (12 m ) 4 384·20 GPa ·8009895833 mm 4 = 26.44 mm ←
Static displacement - z st = M tot ·g K = 14.33 t ·9.81 m /s 2 4449.94 kN /m = 31.57 mm ←
Natural circular frequency - ω 1 = K M tot = 4449.94 kN /m 14.33 t = 17.62 s -1 ←
Vibration period - T 1 = 2·π ω 1 = 2·3.14 17.62 s -1 = 0.356 s ←
Dynamic factor ←
μ = 1 + 1 + ( v 1 ·ω 1 g ) 2 = 1 + 1 + ( 0.92 m /s ·17.62 s -1 9.81 m /s 2 ) 2 = 2.93←
Dynamic displacement - z d = μ ·z st = 2.93·31.57 mm = 92.58 mm ←
Dynamic force - F d = μ ·M s ·g = 2.93·2.1 t ·9.81 m /s 2 = 60.52 kN ←
(without self-weight and uniform load) ←
Simplified equation for the dynamic factor ←
μ 1 = 1 + v 1 ·ω 1 g = 1 + 0.92 m /s ·17.62 s -1 9.81 m /s 2 = 2.65←
The difference will be smaller for greater heights. ←
Elastic time history response of the structure as an SDOF system←
Damped vibration is assumed with factor - ξ = 0.05←
Vibration amplitude - A = z d − z st = 92.58 mm − 31.57 mm = 61.01 mm or ←
A = v 1 ω 1 = 0.92 m /s 17.62 s -1 = 52.21 mm ←
Theoretical equation of motion ←
y (t ) = A ·e -ξ ·ω 1 ·t ·sin (ω 1 ·t ) ←
Solution by direct integration of the impulse load ←
Duration of impulse transmission for a beam with infinite mass [1] ←
τ L = 2.94· 5 ( 15 16 ·M s ·( 1 − ν 2 E + 1 − ν s 2 E s ) ) 2 R s ·v 0 = 2.94· 5 ( 15 16 ·2.1 t ·( 1 − 0.22 20 GPa + 1 − 0.32 206 GPa ) ) 2 400 mm ·6.26 m /s = 3.93 ms ←
Duration of impulse transmission for a beam with finite mass [2] ←
τ L = 2.94· 5 ( 15 16 ·M s ·M d M s + M d ·( 1 − ν 2 E + 1 − ν s 2 E s ) ) 2 R s ·v 0 = 2.94· 5 ( 15 16 ·2.1 t ·12.22 t 2.1 t + 12.22 t ·( 1 − 0.22 20 GPa + 1 − 0.32 206 GPa ) ) 2 400 mm ·6.26 m /s = 3.69 ms ←
The above values correspond well to the experimental data in [3], where the recorded durations are of a similar magnitude. ←
The impulse force function will be determined by using the recommended expressions (9.20) - (9.22) in [1] ←
The coefficient of restitution for perfectly inelastic collision is - e. = 0←
F (t ) = M s ·v 0 · (1 + e. ) ·π 2·τ L ·sin ( π τ L ·t ) · (| t | ≤ τ L ) ←
Impulse load diagram ←
0
2000
4000
0
5
10
15
20
25
30
35
40
45
50
x
y
[0; 0]
[50; 5613.4]
Maximal impulse load value - F max = F ( τ L 2) = F ( 3.69 ms 2 ) = 5613.66 kN ←
The equation of motion is expressed by the Duhamel′s integral ←
y D (t ) = 1M tot ·ω 1 · min (t ; τ L ) ∫ 0 ms F (τ ) ·e -ξ ·ω 1 · (t − τ ) ·sin (ω 1 · (t − τ ) ) dτ ←
Static displacement for the midpoint of the beam ←
y 0 (t ) = z 0 + (z st − z 0 ) ·{ if t < T 1 4 : sin ( 2·π ·t T 1 ) else: 1 ←
Time history of the midpoint displacement, [mm] ←
-80
-70
-60
-50
-40
-30
-20
-10
0
10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
x
y
[0; -79.88]
[5000; 9.72]
Elastic time history response of the structure as an MDOF system←
Number of intermediate joints - n J = 11 (odd) ←
Length of one segment - Δx = L n J + 1 = 12 m 11 + 1 = 1 m ←
Coordinate of joint j - x J (j ) = Δx ·j ←
Shear forces due to unit vertical load F j = 1 at joint j ←
V 1 (x ; j ) = { if x < x J (j ) : 1 − x J (j ) L else: -x J (j ) L ←
-0.25
0
0.25
0.5
0.75
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -0.25]
[12; 0.917]
Bending moments due to unit vertical load F j = 1 at joint j ←
M 1,max (j ) = ( x J (j ) L − 1) ·x J (j ) ←
M 1 (x ; j ) = M 1,max (j ) ·{ if x < x J (j ) : x x J (j ) else: L − x L − x J (j ) ←
0
0.75
1.5
2.25
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; 0]
[12; 2.25]
Flexibility matrix ←
D (i ; j ) = ( L ∫ 0 m M 1 (x ; i ) ·M 1 (x ; j ) dx ) ·1E ·I + ( L ∫ 0 m V 1 (x ; i ) ·V 1 (x ; j ) dx ) ·1G ·A Q ←
D =
0.0216 0.0378 0.0489 0.0552 0.0574 0.056 0.0514 0.0443 0.035 0.0242 ⋯ 0.0124
0.0378 0.0704 0.093 0.106 0.111 0.109 0.1 0.0864 0.0685 0.0474 ⋯ 0.0242
0.0489 0.093 0.128 0.149 0.158 0.155 0.144 0.124 0.0988 0.0685 ⋯ 0.035
0.0552 0.106 0.149 0.179 0.193 0.193 0.18 0.156 0.124 0.0864 ⋯ 0.0443
0.0574 0.111 0.158 0.193 0.214 0.217 0.205 0.18 0.144 0.1 ⋯ 0.0514
0.056 0.109 0.155 0.193 0.217 0.227 0.217 0.193 0.155 0.109 ⋯ 0.056
0.0514 0.1 0.144 0.18 0.205 0.217 0.214 0.193 0.158 0.111 ⋯ 0.0574
0.0443 0.0864 0.124 0.156 0.18 0.193 0.193 0.179 0.149 0.106 ⋯ 0.0552
0.035 0.0685 0.0988 0.124 0.144 0.155 0.158 0.149 0.128 0.093 ⋯ 0.0489
0.0242 0.0474 0.0685 0.0864 0.1 0.109 0.111 0.106 0.093 0.0704 ⋯ 0.0378
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0.0124 0.0242 0.035 0.0443 0.0514 0.056 0.0574 0.0552 0.0489 0.0378 ⋯ 0.0216
mm/kN ←
Mass matrix ←
d M.j = m ·Δx t = 1.6 t /m ·1 m t = 1.6←
M =
1.6 0 0 0 0 0 0 0 0 0 ⋯ 0
0 1.6 0 0 0 0 0 0 0 0 ⋯ 0
0 0 1.6 0 0 0 0 0 0 0 ⋯ 0
0 0 0 1.6 0 0 0 0 0 0 ⋯ 0
0 0 0 0 1.6 0 0 0 0 0 ⋯ 0
0 0 0 0 0 3.7 0 0 0 0 ⋯ 0
0 0 0 0 0 0 1.6 0 0 0 ⋯ 0
0 0 0 0 0 0 0 1.6 0 0 ⋯ 0
0 0 0 0 0 0 0 0 1.6 0 ⋯ 0
0 0 0 0 0 0 0 0 0 1.6 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 0 0 0 0 0 0 0 ⋯ 1.6
←
Total mass of the structure - sum (⃗ dM ) = 19.7 t ←
Eigenvalues ←
M sq = √ M =
1.26 0 0 0 0 0 0 0 0 0 ⋯ 0
0 1.26 0 0 0 0 0 0 0 0 ⋯ 0
0 0 1.26 0 0 0 0 0 0 0 ⋯ 0
0 0 0 1.26 0 0 0 0 0 0 ⋯ 0
0 0 0 0 1.26 0 0 0 0 0 ⋯ 0
0 0 0 0 0 1.92 0 0 0 0 ⋯ 0
0 0 0 0 0 0 1.26 0 0 0 ⋯ 0
0 0 0 0 0 0 0 1.26 0 0 ⋯ 0
0 0 0 0 0 0 0 0 1.26 0 ⋯ 0
0 0 0 0 0 0 0 0 0 1.26 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 0 0 0 0 0 0 0 ⋯ 1.26
←
C = copy (M sq ·D ·M sq ; symmetric (n J ) ; 1; 1) = copy (M sq ·D ·M sq ; symmetric (11) ; 1; 1) =
0.0345 0.0605 0.0781 0.0883 0.0918 0.136 0.0822 0.0708 0.056 0.0387 ⋯ 0.0198
0.0605 0.113 0.149 0.17 0.178 0.265 0.16 0.138 0.11 0.0758 ⋯ 0.0387
0.0781 0.149 0.204 0.238 0.252 0.378 0.23 0.199 0.158 0.11 ⋯ 0.056
0.0883 0.17 0.238 0.287 0.309 0.469 0.287 0.25 0.199 0.138 ⋯ 0.0708
0.0918 0.178 0.252 0.309 0.343 0.529 0.328 0.287 0.23 0.16 ⋯ 0.0822
0.136 0.265 0.378 0.469 0.529 0.839 0.529 0.469 0.378 0.265 ⋯ 0.136
0.0822 0.16 0.23 0.287 0.328 0.529 0.343 0.309 0.252 0.178 ⋯ 0.0918
0.0708 0.138 0.199 0.25 0.287 0.469 0.309 0.287 0.238 0.17 ⋯ 0.0883
0.056 0.11 0.158 0.199 0.23 0.378 0.252 0.238 0.204 0.149 ⋯ 0.0781
0.0387 0.0758 0.11 0.138 0.16 0.265 0.178 0.17 0.149 0.113 ⋯ 0.0605
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ 0.0198 0.0387 0.056 0.0708 0.0822 0.136 0.0918 0.0883 0.0781 0.0605 ⋯ 0.0345
←
⃗ λ = reverse (last (eigenvals (C ·10-3 ) ; 7) ) = [ 0.00261 0.000137 3.32×10-5 9.33×10-6 4.78×10-6 2.17×10-6 1.51×10-6 ] ←
Natural circular frequences - ⃗ ω = 1⃗ λ = [ 19.57 85.55 173.53 327.32 457.58 678.76 814.79] s ⁻¹ ←
Natural vibration frequences - ⃗ f = ⃗ ω 2·π ·Hz = ⃗ ω 2·3.14 ·Hz = [ 3.11 Hz 13.61 Hz 27.62 Hz 52.09 Hz 72.83 Hz 108.03 Hz 129.68 Hz ] ←
Natural vibration periods - ⃗ T = 1⃗ f = [ 0.321 s 0.0734 s 0.0362 s 0.0192 s 0.0137 s 0.00926 s 0.00771 s ] ←
Eigenvectors ←
Φ = inverse (M sq ) ·extract cols (eigenvecs (C ·10-3 ) ; range (n J ; n J − 7 + 1; -1) ) = inverse (M sq ) ·extract cols (eigenvecs (C ·10-3 ) ; range (11; 11 − 7 + 1; -1) ) =
0.0752 0.161 0.217 0.28 0.301 0.323 0.309
0.145 0.28 0.319 0.28 0.186 -9.74×10-13 -0.113
0.206 0.323 0.252 2.84×10-13 -0.187 -0.323 -0.266
0.253 0.28 0.0565 -0.28 -0.309 1.15×10-13 0.216
0.283 0.161 -0.155 -0.28 -0.027 0.323 0.209
0.293 0 -0.251 -7.46×10-15 0.22 5.01×10-14 -0.193
0.283 -0.161 -0.155 0.28 -0.027 -0.323 0.209
0.253 -0.28 0.0565 0.28 -0.309 -2.16×10-13 0.216
0.206 -0.323 0.252 -2.77×10-13 -0.187 0.323 -0.266
0.145 -0.28 0.319 -0.28 0.186 1.09×10-12 -0.113
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0.0752 -0.161 0.217 -0.28 0.301 -0.323 0.309
←
X = stack (matrix (1; 3) ; Φ ; matrix (1; 3) ) =
0 0 0 0 0 0 0
0.0752 0.161 0.217 0.28 0.301 0.323 0.309
0.145 0.28 0.319 0.28 0.186 -9.74×10-13 -0.113
0.206 0.323 0.252 2.84×10-13 -0.187 -0.323 -0.266
0.253 0.28 0.0565 -0.28 -0.309 1.15×10-13 0.216
0.283 0.161 -0.155 -0.28 -0.027 0.323 0.209
0.293 0 -0.251 -7.46×10-15 0.22 5.01×10-14 -0.193
0.283 -0.161 -0.155 0.28 -0.027 -0.323 0.209
0.253 -0.28 0.0565 0.28 -0.309 -2.16×10-13 0.216
0.206 -0.323 0.252 -2.77×10-13 -0.187 0.323 -0.266
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 0 0 0 0
←
-0.2
0
0.2
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -0.323]
[12; 0.323]
Modal masses - ⃗ mΦ = diag2vec (transp (Φ ) ·M ·Φ ) ·t = [ 1 t 1 t 1 t 1 t 1 t 1 t 1 t ] ←
Rayleigh damping model is assumed ←
β = 2·ξ ⃗ ω1 + ⃗ ω2 = 2·0.05 19.57 + 85.55 = 0.000951 , α = β ·⃗ ω1 ·⃗ ω2 = 0.000951·19.57·85.55 = 1.59←
ξ (ω ) = α 2·ω + β ·ω 2←
Modal damping factors - ⃗ ξΦ = ξ (⃗ ω ) = [ 0.05 0.05 0.0871 0.158 0.219 0.324 0.389] ←
0
0.1
0.2
0.3
0
100
200
300
400
500
600
700
800
x
y
[0; 0]
[814.79; 0.389]
Damped natural frequences ←
⃗ ωD = ⃗ ω · √ 1 − ⃗ ξΦ ^2 ·s -1 = [ 19.54 s -1 85.44 s -1 172.87 s -1 323.2 s -1 446.43 s -1 642.14 s -1 750.77 s -1 ] ←
Dynamic load vector ←
F Φ (i ; t ) = Φ j m , i ·F (t ) ←
The equations of modal dynamic displacements are expressed by the Duhamel′s integral ←
y Φ (i ; t ) = 1⃗ mΦ .i ·ω D .i · min (t ; τ L ) ∫ 0 ms F Φ (i ; τ ) ·e -⃗ ξΦ .i ·⃗ ωi ·s -1 · (t − τ ) ·sin (ω D .i · (t − τ ) ) dτ ←
Joint displacements ←
y J (j ; t ) = 7 ∑ i = 1Φ j , i ·y Φ (i ; t ) ←
Comparison of time history records of the midpoint displacements for SDOF and MDOF systems, [mm] ←
-80
-70
-60
-50
-40
-30
-20
-10
0
10
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
x
y
[0; -85.91]
[5000; 14.2]
Time history records for the amplitudes of separate joints, [mm] ←
-50
-40
-30
-20
-10
0
10
20
30
40
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
x
y
[0; -52.21]
[5000; 44.12]
Beam deflections for the first five time steps at Δt = 17.7 ms
-30
-20
-10
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -37.32]
[12; 0]
Animation of beam response (slowed down) ←
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
-100
-75
-50
-25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
x
y
[0; -100]
[12; 0]
[1] Harris C. M., Piersol A.G., HARRIS’ SHOCK AND VIBRATION HANDBOOK, Fifth Edition, McGraw-Hill 2002, ISBN 0-07-137081-1 ←
[2] Qing Peng, Xiaoming Liu, Yueguang Wei, Elastic impact of sphere on large plate, Journal of the Mechanics and Physics of Solids, Volume 156, 2021, 104604, ISSN 0022 - 5096, https://doi.org/10.1016/j.jmps.2021.104604 ←
[3] Hong Hao and Thong M. Pham, Performance of RC Beams with or without FRP Strengthening Subjected to Impact Loading, Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering (CSEE’17) Barcelona, Spain – April 3– 4, 2017 ISSN:2371 - 5294 DOI:10.11159/icsenm17.1 ←
[4] Gugan, D. “Inelastic collision and the Hertz theory of impact.” American Journal of Physics 68 (2000): 920-924., http://www.oxfordcroquet.com/tech/gugan/index.asp ←